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ABSTRACT

A standing-wave acoustic parametric source (SWAPS) is proposed as a small,
low-frequency underwater sound source. SWAPS is a liquid-filled cylindrical tube
which is driven at one end by a piston transducer and terminated on the other end
by a pressure-release reflector to form a resonant cavity. The piston is driven simul-
taneously at two high frequencies wo1 and W2 which are at or near resonance for
the plane-wave mode in the cavity. The resulting large-amplitude primary sound
waves mix nonlinearly to produce secondary sound waves. The secondary wave at
the low difference frequency wa - 2 passes easily through the relatively thin tube
walls and radiates to the far field. In this report the far-field radiation at the dif-
ference frequency is calculated by use of the virtual-source-density method. Two
special cases are discussed: in the first the high frequencies are neighboring reso-
nance frequencies so that the length of SWAPS is nearly 1/2 wavelength at the dif-
ference frequency in the liquid in the tube; in the second both high frequencies lie
within the bandwidth of a single resonance of the cavity; in this second case SWAPS
can be as short as 1/4 wavelength at the high frequency. The results are expressed
in terms of a quality factor that describes the resonance properties of the system
when difference-frequency radiation is being generated. This quality factor, which
must be determined experimentally, is an input to the mathematical model. Com-
parison is made to a traveling-wave acoustic parametric source which employs the
same piston transducer as a pump.
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MATHEMATICAL MODEL FOR A STANDING-WAVE ACOUSTIC
PARAMETRIC SOURCE (SWAPS)

INTRODUCTION

Within the past decade the generation of narrow-beam, low-frequency acoustic radia-
tion from a relatively small piston source has been accomplished by the use of the traveling-
wave acoustic parametric source. Here the piston source is driven simultaneously by two
primary signals of high frequency w1 and co2. During subsequent propagation a low-
frequency secondary wave at the difference frequency co1 - C'2 is generated by the non-
linear interaction of the primary sound waves in the water medium. This so-called endfire
array, first proposed by Westervelt [1] and confirmed experimentally by Bellin and Beyer
[2], has been the subject of extensive theoretical and experimental investigation by Berktay
[3] and others [4-6]. The desirability of such a device is enhanced by the lack of side-
lobes in the radiation pattern and by the relatively large bandwidth at the difference
frequency. Its chief disadvantage is the low efficiency of the conversion due to the absorp-
tion and diffraction of the primary waves and the nonlinear generation and subsequent
absorption of both the harmonics of the primary waves and the sum frequency w + 2.
This limitation is unlikely to be eliminated by future work.

In 1965 Dunn, Kuljis, and Welsby [7] briefly examined the generation of a 47-kHz
sound from two primary waves at 326 kHz and 373 kHz in a spherical-standing-wave
system. However, they were primarily concerned with subharmonic generation when
cavitation is present and did not pursue the matter further.

In this report we describe a low-frequency sound source called a standing-wave acoustic
parametric source (SWAPS) which increases the nonlinear conversion by "folding" the
traveling wave to produce a standing wave [8]. This is accomplished by use of a closed
cylindrical tube that is near resonance for both primary sound waves. Because the parametric
effect is inherently nonlinear, an increased generation of sound at the difference frequency
results. This difference frequency passes easily through the relatively thin tube walls and
ends and radiates to the far field. We calculate the far-field radiation from SWAPS by use
of the virtual-source-density method used by Westervelt [1]. Included in our discussion
is a comparison to a traveling-wave acoustic parametric source which employs the same
piston transducer to generate the primary waves.

DESCRIPTION OF SWAPS

SWAPS is envisioned to be a liquid-filled circular cylindrical tube or cavity of inner
radius a and length Q with a piston transducer mounted on one end and a pressure-release
reflector mounted on the other end (Fig. 1). The piston is driven simultaneously at the two
primary frequencies co1 and C 2. The walls are made sufficiently rigid to allow predominantly
plane-wave propagation of the primaries. Both C1 and C 2 are chosen to be near a resonance
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Fig. 1 - Standing-wave acoustic parametric source

frequency of the plane-wave mode of the cavity. Two special cases are considered: (1)
C1 and Cw2 are neighboring resonance frequencies; (2) co, is close enough to W2 so that
they both lie well within the bandwidth of a single resonance frequency. The resulting
primary waves present in this standing-wave system now interact nonlinearly to produce
sum and difference components as well as various harmonic components. The difference
frequency Cod = C 1 - W2 is chosen to be much smaller than either primary frequency.
Thus the relatively thin walls and ends of the tube can also be made nearly transparent
acoustically at the difference frequency, so that the difference frequency radiates unimpeded
to the far field.

The use of a pressure-release reflector should inhibit the growth of both the sum
frequency and harmonics of the primaries. This occurs because of the 1800 phase shift
that each frequency component in a plane wave undergoes upon reflection from a pressure-
release boundary. Consider a sinusoidal wave leaving the piston. As it propagates, harmonics
are generated with a fixed phase relationship to the fundamental. Ignoring dispersion, this
phase relationship is maintained while the "most stable" waveform, the sawtooth, is
approached. When the distorted wave is reflected from the pressure release end, the 1800
phase shift produces a "least stable" waveform or reverse sawtooth. During subsequent
propagation back to the piston, new harmonic generation cancels the existing harmonic
content, and the waveform tends to return to a sinusoid. The sum frequency s = Co +
Co2 will be close in frequency to the second harmonic of both primaries and will be in-
hibited in a similar manner. In addition, any dispersion that exists in the tube will tend
to inhibit the growth of harmonics and the sum frequency, since it will also tend to destroy
the stable phase relationship between the various components. Thus competing nonlinear
interactions are inhibited, and more primary energy remains available for generation of the
difference frequency.

The liquid used in SWAPS can be chosen to optimize the performance. For example
an ideal liquid might have a characteristic acoustic impedance equal to that of the surround-
ing water medium so that the difference frequency is transmitted effectively into the water,
have a high degree of nonlinearity to enhance the interaction of the primaries, have small
attenuation of the primaries due to linear loss mechanisms such as viscous absorption in
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order to enhance the resonance properties of the cavity, have a high cavitation threshold
(if cavitation proves to be undesirable), and have a low sound speed to maximize the
acoustic size of the interaction volume.

MATHEMATICAL MODEL OF SWAPS

The basic equations of acoustics describing the conservation of mass, momentum,
and energy and the equation of state of the medium are inherently nonlinear. Under the
assumptions of infinitesimal wave motion, the nonlinear terms can be neglected, and the
linear wave equation is obtained. Fortunately, for most applications, infinitesimal theory
is quite adequate. However, when the wave motion is of large amplitude so that the
acoustic particle velocity is not negligible when compared with the sound speed, the non-
linear terms must be retained. It is the existence of these nonlinear terms that leads to
mixing of the primary waves to produce secondary waves which consist of harmonics of
each primary frequency component and intermodulation components such as sum and
difference frequencies. References 9 through 12 give detailed discussions of nonlinear
acoustics.

Because of the intractable nature of the nonlinear equations one usually makes a
number of simplifying assumptions or idealizations to obtain a solution. For example, if
one assumes that the secondary waves are small compared with the primary waves, first-
order perturbation theory can be used. Such an approach was used by Westervelt [1] in
describing the parametric acoustic array, which we call a traveling-wave acoustic parametric
source and apply the acronym TWAPS.

Westervelt used as his starting point the exact equation for arbitrary fluid motion
derived by Lighthill 13]. Using perturbation theory and neglecting viscosity, he derived
the inhomogeneous wave equation

0 2 P= -p 0O (1)

where P is the acoustic pressure of the secondary wave which includes the harmonic and
intermodulation components and p0 is the equilibrium mass density. The virtual-simple-
source-strength density q which results from the primary-wave pressure Pi is given by

r a 2 ~~~~~~~~~~(2)q = 2 c4 at (i

where c0 is the sound speed for infinitesimal waves. The parameter r is defined by

+ Po (a2p\2C a= 1 O 2 P = PO

or

r =1 + , (4)
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where the nonlinearity parameter B/A is a measure of the nonlinear response of the liquid
medium. For water at 200, B/A is about 5. Other liquids have values of B/A that lie
between about 4 and 11 [11].

Westervelt assumed a primary wave consisting of two collimated collinear plane waves
of frequencies w1 and 2 emanating from a common source. He reintroduced the effects
of viscosity in an ad hoc way by assuming that the primaries are attenuated by the usual
absorption coefficient of linear acoustics. Substituting this primary wave into Eq. (2) led
to a virtual-source density with the frequency components 2X 1 , 2W2 , co and Wd He
then obtained the far-field radiation at the difference frequency by using the cod virtual-
source-density term to obtain the inhomogeneous term f in Eq. (1) and by integrating
this expression times the free-space Green's function over the cylindrical volume containing
the primary waves. He assumed that the difference frequency is low enough so that its
attenuation is negligible. This model assumes that the transfer of energy from the primaries
into secondary waves such as harmonics and sum and difference components is small
enough so that nonlinear attenuation of the primaries is negligible. Recently attempts
have been made to modify the primary-wave distribution to approximate the nonlinear
attenuation due to harmonic generation [6]. At large primary amplitudes (or at very low
primary frequencies), this loss mechanism will dominate linear absorption.

We now calculate the difference frequency radiated from SWAPS into the far field
by the perturbation approach of Westervelt. First we obtain the primary-wave distribution.
The piston end of SWAPS is assumed to be vibrating with a normal velocity V given by

V = V1 sin clt + V2 sin W2 t- (5)

The axis of the tube is taken to be the z axis with the piston at z = 0. The reflector end
of the tube is pressure released, so that

Pi = 0 at z = Q. (6)

The walls of the tube are assumed rigid at w1 and W2 , and plane wave motion is assumed.
The linear attenuation coefficients for the primaries in the tube a, and 'Q2 include contri-
butions from such linear loss mechanisms as boundary-layer and mainstream-viscous
attenuation. The solution to the one-dimensional linear wave equation subject to the
boundary conditions given in Eqs. (5) and (6) is given by

Pi=P +P2

XR 1 sin [ (Q -z ) (k1 -ia 1 )] e (1
(k-ieal) cos [(k, -i ,)] 5

(7)
+ a similar term for P2 ,

where Re indicates the real part of the expression in braces and k is the wavenumber.

We now assume that the linear attenuation is small, so that

a 1Q << 1,
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and

a 2 Q << 1. (8)

In addition we assume that the length is such that both wa and Cw2 are equal to or
nearly equal to a resonance frequency wn of the standing-wave system, that is,

1 n << on

and (9)

Con 2 << n-

where it is assumed that co and W2 are located on opposite sides of conk When the small
dispersion and attenuation that will exist in the tube are neglected, the resonance fre-
quencies con are given by

= (2n + 1)irc0 (10)

where the integer n indicates the order of the resonance and c0 is the free-field sound
speed for the liquid in SWAPS.

With these assumptions the linear solution can be written in the simplified form

Pi = p0 co [VIA, sin (colt - 01) cos klz + V2A2 sin ( 2t - 2) cos k 2z], (11)

where the amplitude and phase factors are given by

1A = 
c1Q 41 + [(w 1 - n )/(UlC0)] 2' 1/2

and (12)

01 = tan- U1 - Wn )aolco)],

and similarly for A2 and 02. At resonance, C01 = Cn and Al and A2 have their maximum
values of 1/a1 Q and 1/U2Q respectively. From Eqs. (12) we see that the conditions that
wh and W2 lie within the bandwidth of the resonance at COn can be expressed as

W1 - Wfn < 1
6 10alco

and (13)

on- c2 <1
U2 c 0

5



ROGERS AND VAN BUREN

If the amplitudes of the primary waves were small and if the assumed boundary
conditions at the walls and ends were met, Eq. (11) would be a good representation of
the primary waves. However these primary waves would not produce much difference-
frequency radiation. Therefore, if significant difference-frequency radiation is desired,
then the amplitudes of the primaries must be large and the infinitesimal theory used to
obtain Eq. (11) is no longer valid. Even if the pressure-release reflector works perfectly,
the harmonics of the primaries as well as other high-frequency intermodulation components
cannot now be treated as small secondary waves which have a negligible effect on the
primary waves and can be calculated from first-order perturbation theory. Thus we
modify the primary-wave distribution to include these high-frequency components and still
consider the difference frequency Wd to be the secondary wave. Since we are interested
in only Cod, we need to know only the distribution of the fundamental components of
the primaries. We assume that this distribution is given by

Pi = PoCo[v1 Q1 sin (clt - 1) cos k1z + V2 Q2 sin ( 2 t - 02) cos k2z], (14)

where the quality factors Q1 and Q2 contain the dependence given by Eqs. (12) and an
additional unspecified factor representing the loss of energy from the fundamental com-
ponents into the generation of high-frequency intermodulation components. We also include
in Q1 and Q2 the loss of energy from coi and Co2 due to generation of the difference
frequency itself. This apparent departure from second-order perturbation theory is
justified by the fact that the difference frequency does not build up in the standing-wave
system but instead radiates to the far field. Consequently the amount of difference fre-
quency present in the region occupied by the primaries can be small compared with the
primaries even if a significant amount of difference frequency is radiated. Therefore Q1
and Q2 determine the amplitudes of the primaries during difference-frequency generation
and are each a function of both piston velocity components V and V2 . To simplify the
analysis, we assume that V is equal to V2 and that w 1 -Cn = ,- 2 = Od 2 when
both primaries lie within a single resonance. Then since col = co, so that a1 a a,
we have Al 1 A 2, Q1 Q2=Q, and 01 = 00o. The primary distribution becomes

Pi = pocoVQ [sin (cot - 00) cos kz + sin (o 2 t + 00) cos k2 z] . (15)

Thus we require that the behavior of Q as a function of V be determined experimentally
as an input to this mathematical model.

Substituting the expression for Pi into Eqs. (1) and (2) and retaining only the terms
that contribute to the difference frequency, we have

f q = Po _ V2Qk 2 [cos (Codt -kdZ -20o) + COS (Odt + kdz 2k)
(16)

+ COS (dt - ksz - 2) + COS (Odt + ksz -20)]

It can be shown that the last two terms do not contribute significantly to the far field,
when s >> Cod and ks >> kd. The difference-frequency pressure at the field point R
is given by
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-~1Cfe -ikd RL rlPd (Ro)= - ,ife 1l l rdV, (17)

where ie integration is over the circular cylindrical volume of radius a and length Q and
where r is the source point (Fig. 2). We assume for the present that SWAPS is filled with
water (or whatever the surrounding liquid is). We take A to be in the far field and use
the asymptotic form for the free-space Green's function. The free-space Green's function
is appropriate for the difference frequency, since we assumed that the walls and ends of
SWAPS are acoustically transparent at Wd. Neglecting the last two terms in Eq. (16),
converting to complex notation, and choosing cylindrical coordinates (a, , z) for the
source point and spherical coordinates (R, 0, ) for the field point, we obtain the expression

ei(wdt-kdR-2 o)
Pd (R, 0) = SF(O) R (18)

with

Pp 0 V2Q 2k2 Ca 27r Q -ai~o(-p)zoO ikd ikdSF() )d e - 2 L eikd[(e + ekdz) dadgdz,

(19)

where S is the source level and F(O) is the far-field pressure distribution. The integration
over j3 of the factor depending on and a produces 27rJO(kdu sin 0), where J is the
zero-order Bessel function, and subsequent integration over a produces the aperture factor

FIELD POINT

(R,e,4b)

K

R R - r

y
Fig. 2 - Geometry of the problem
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H= 2ian 0 J1 (kda sin 0). (20)

We usually choose kda sin 0 << 1, so that J1 can be replaced by its lowest order term
and H has its maximum value

H 7ra2. (21)

Integration over z of the remaining factors produces two oppositely directed end-fired-
array terms that are kdQ out of phase with each other:

E(0) = eikdQ ( sin [kdQ cos 2 (0/2)]
E( = e" kdR cos2 (0/2)

( sin [kdQ sin2 (0/2)] '

kdQ sin2 (0/2) (

The second term in braces can be obtained from the first term in braces by replacing 0
with 1800 - 0. Collecting terms, we obtain the source level

S = rpp0 V2 Q2 kda 2 IE(0)j/16 (23)

and the far-field pressure distribution

I F() I Jl(kda sin 0) IE
(1/2)kda sin 0

+ 2 cos kdQ

1 [sin2 [kdQ cos 2 (0/2)] sin2 [kdQ sin2 (0/2)]

kdQ cos4 ( /2) sin4 (0/2)

sin [kdQ sin2 (0/2)] sin [kdQcos2(0/2)] 1/2

sin2 (0/2) cos2 (0/2) ]
where

IE(O)I [sin2kd + sin 2kdQ +111/

and where F(0)I is normalized to unity in the forward direction ( = 0).

In the first special case, where w1 and 2 are two neighboring resonance frequencies,
it can easily be shown that kdQ = r, so that Q = Xd/ 2 . Then IE(0)I is equal to unity, and
the source level and far-field pressure distribution for this half-wavelength SWAPS (HWS)
are given by

SHWS = rrpOV 2 Q 2 kda 2 /16 (26)

and

IF(0)I = FJl(kda sin 0)] [cos 0 cos (r/2 cos 0)] 
L(1/2)kda sin 0 L (1r/4) sin 2 0

(24)

(25)

8
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We assume that the first factor is nearly equal to unity and plot the second factor in
Fig. 3. The far-field pressure distribution becomes zero in the broadside direction, similar
to the far-field pressure distribution of a linear dipole. The 3-dB-down points occur at
0 = 530 and 0 = 1270. Complete nulls occur in this pattern because the two oppositely
directed waves in the virtual-source density produce complete cancellation over a half
wavelength. If SWAPS contained a liquid with a sound speed less than that of water,
then the length of the tube would be less than a half wavelength in water and the cancella-
tion would be incomplete. This liquid should also have a density that is correspondingly
larger than that of water, so that the characteristic impedances would be nearly equal and
the effect of the boundary between the two liquids would be minimized. This impedance
match coupled with the small acoustical size of SWAPS at the difference frequency should
allow the far field to be calculated as if SWAPS were filled with water insofar as the phase
terms are concerned. Of course the quantities po, c0 , and appearing in the amplitude
of f should be evaluated for the actual liquid in SWAPS. For example, if the liquid in
SWAPS were similar to carbon tetrachloride with a sound speed of 105 centimeters per
second and a density of 1.5 grams per cubic centimeter, the far-field pressure distribution
calculated using Eq. (24) would be nearly omnidirectional with only 1/2 dB difference
between the maxima at 0 and 1800 and the minima at 900 and 2700.

The total power WHWS radiated at the difference frequency by the half-wavelength
SWAPS is obtained by numerical integration of F(0)12 with Gaussian quadrature. The
result is

1.647rS2w
WHWS =W2poSf (28)

3400 bU- 100

2700. 0

2000 160'
1900 1800 170°

Fig. 3 - Far-field pressure distribution for
the half-wavelength SWAPS
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Of perhaps more interest is the second special case, where both Wc and co2 lie within
the bandwidth of a single resonance of the standing-wave system. In this case the length
of SWAPS is nearly equal to

2 = (2m + 1) X (29)

where m is an integer and X is the wavelength in SWAPS at either primary frequency.
Consequently 2 can be considerably shorter than a half wavelength at the difference
frequency to take advantage of the fact that S depends on Q22. Thus if Q2 increases
faster than 1/2 as is decreased to values corresponding to smaller integer values for m,
there will be an overall increase in S. For small-amplitude waves it is seen from Eq. (12)
that Q22 increases nearly as 1/2. For large-amplitude waves, Q22 should also increase as
the length is decreased from that of a half-wavelength SWAPS. At some optimum length,
however, increased nonlinear losses, possible cavitation, and heating effects will cause Q22
to begin to decrease.

For this short SWAPS (SS), the far-field pressure distribution predicted by Eq. (24) is
omnidirectional, and the source level and radiated power are given by

Sss = rpOV2Q2k 2a2Q/8, (30)

and
2

WSS = 4 7rSSs (31)

To get some feeling for these expressions, we compare the results for the short SWAPS
to those obtained by Westervelt for TWAPS, although we recognize that SWAPS and TWAPS
are designed for different applications. For simplicity we assume that TWAPS is operating
with the same piston velocity as SWAPS. The source level and radiated power calculated
by Westervelt are designated by ST and WT, and we use a' to represent the free-field
attenuation of the primaries in seawater. This attenuation coefficient should include con-
tributions from viscous attenuation, the generation of harmonics and other intermodulation
components, and diffraction. For the case where the short SWAPS is filled with water,
we have

SS =Q22 (32)
ST

and

ws 2Q4cx'QdQ/w.- (33)
WT

Thus the achievement of a source level comparable to that of TWAPS requires that Q2 be
comparable to 1/Q. We are not predicting values for Q at the present time and emphasize
again that it is a parameter that must be experimentally determined as an input to this
mathematical model. The ratio of total radiated powers is much more favorable than the
ratio of source levels, since kd is expected to be much larger than a', so that

so
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Wss» (Ss) 2

SUMMARY

We summarize some of the more important features of the standing-wave acoustic,
parametric source (SWAPS):

* SWAPS is designed to be a small, low-frequency underwater sound source.

* Two special modes of operation are available:

-The two primary frequencies are neighboring resonance frequencies for the
standing-wave system in SWAPS. In this case the length of SWAPS is a half wavelength
at the difference frequency in the liquid in SWAPS.

-The two primary frequencies are both within the bandwidth of a single
resonance frequency for the standing-wave system in SWAPS. In this mode the length
of SWAPS is nearly equal to an odd number of quarter wavelengths at either primary
frequency in the liquid in SWAPS and thus can be considerably shorter than the half-
wavelength SWAPS.

* SWAPS is expected to be a more effective radiator of difference frequency than
a traveling-wave acoustic parametric source (TWAPS) because (a) high-energy density and,
consequently, increased nonlinear conversion is achieved by simultaneous resonance or
near resonance of the two primary signals and (b) competing nonlinear interactions such
as the generation of harmonics of the primaries and the generation of the sum frequency
are inhibited by the pressure-release reflector.

* Since SWAPS is short acoustically at the difference frequency, it will not have the
high directivity associated with TWAPS. Instead SWAPS is intended for applications that
require an omnidirectional or perhaps a dipolar far-field pressure distribution. If directivity
is desired, an array of SWAPS sources can be used. The frequently encountered acoustic
interaction problem inherent with an array of small conventional sources should not occur
here because the piston which produces the high-frequency primary waves in a SWAPS
source will not be affected appreciably by the low-frequency difference-frequency radiation
from neighboring SWAPS sources. The high-frequency primary waves are contained within
the SWAPS sources and therefore cannot affect the piston in a neighboring SWAPS source.

* The liquid used in SWAPS can be chosen to optimize the performance. Some
important parameters to consider are sound speed, density, nonlinearity, attenuation
coefficient, and cavitation strength.
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high frequencies are neighboring resonance frequencies so that the length of SWAPS is nearly 1/2 wavelength
at the difference frequency in the liquid in the tube; in the second both high frequencies lie within the
bandwidth of a single resonance of the cavity; in this second case SWAPS can be as short as 1/4 wavelength
at the high frequency. The results are expressed in terms of a quality factor that describes the resonance
properties of the system when difference-frequency radiation is being generated. This quality factor, which
must be determined experimentally, is an input to the mathematical model. Comparison is made to a
traveling-wave acoustic parametric source which employs the same piston transducer as a pump.
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